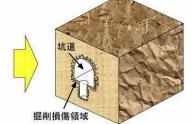
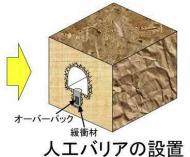

令和3年度 第5回確認会議 説明用資料(補足説明)

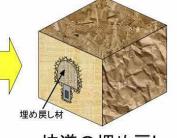
令和3年7月16日

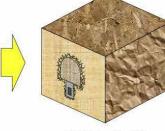
日本原子力研究開発機構 核燃料・バックエンド研究開発部門 幌延深地層研究センター

2. 研究の必要性の補足


【異なる地質環境(深度350mと深度500m)で得られる成果】




研究開発の全体像と研究課題毎の関連 (令和2年度以降の必須の課題)



調査

坑道掘削

坑道の埋め戻し

埋め戻し後

坑道内におけるボーリング調査

坑道掘削

模擬オーバーパックの設置

模擬PEMの設置

コンクリートプラグを用いた坑道の閉鎖

が起するのがです。 プラン阿豆 が直接的 快速3 ハ・・・・アンマの女性 快速! Lintマの女性 コンファーフラフ・にが起ぐが対策					
		各課題の成果が地層処分事業のどの時点に反映されるのか?			
必須の課題の項目			調査	建設(坑道掘削)・操業(人エバリ アの設置)・坑道の埋め戻し	坑道の埋め戻し後の評価
①実際の地質環境	1.1 人工バリア性能確認試験		,人エバリア設計手法の確認 ,	人エパリア設置技術、坑道埋め戻し 方法の確認	人エバリア、埋め戻された坑道で起こ / る現象の確認
における人エバリア の適用性確認	1.2 物質移行試験		岩盤中での物質の動きの調査 技術の確認 _	岩盤中、掘削損傷領域での物質の動 ¦	
	2.1 人工パリアの定 置・品質確認などの 方法論に関する実証 試験	2.1.1 操業・回収技術等の技術オプ ションの実証、閉鎖技術の実証 、		人工パリア設置、坑道埋め戻しの技 、 ,術オプションの確認	
		2.1.2 坑道スケール〜ピットスケール での調査・設計・評価技術の体系化	岩盤の状態に応じた、坑道、 ピット、人エパリアの設計手法 □ の確認	坑道〜ピットの配置、掘削・操業・閉鎖 技術の体系化。坑道周辺の物質の動 きの確認	埋め戻し後の掘削損傷領域、岩盤中 の物質の動きの予測解析技術の確認
	2.2 高温度(100℃以上)等の限界的条件下での人工バリア性能確認試験				限界条件下で人工パリアで起こる現 - 象の確認
③地殻変動に対す る堆積岩の緩衝能 力の検証	3.1 水圧擾乱試験な どによる緩衝能力の 検証・定量化	3.1.1 地殻変動が地層の透水性に 与える影響の把握	長期的な岩盤中の水の動き易 さを推測する技術の確認		
		3.1.2 地下水の流れが非常に遅い領域を調査・評価する技術の高度化	長期的な地下水の流動状態を __ 把握する技術の確認		
	3.2 地殻変動による人工バリアへの影響・回復挙動試験			坑道、人エバリア周辺の地下水の動き易さを推測する技術の確認	、 埋め戻された坑道、人エパリア周辺の 地下水の動きを推測する技術の確認